Infiltration BMPs: Caltrans Retrofit Pilot Study Experience

Brian Currier, PE
University of California, Davis
Center for Environmental and Water
Resources Engineering

Infiltration for Stormwater Management...

Why?

 Reduce surface water discharges and comply with NPDES regulations

How?

Basins

Trenches

Siting and Design Criteria...

Typical Basin Design

Design Procedure Used...

- It varied...L.A. basin sized to drain in 36 hours
- S.D. basin sized to drain in 72 hours (maximum recommended)
- A=V/(T*f)
 - A = area of basin,
 - V = capture volume,
 - f = field permeability,
 - T = drain time

Typical Trench Design

Infiltration Challenges...

- Stormwater treatment
- Vectors (Mosquito Habitat)
- Groundwater impacts

Siting Criteria Used

- Minimum Field Permeability of 7mm/hr (0.27 in/hr)
- Minimum Groundwater Separation of 0.6 m to 1.2 m (2-4 ft)
- Other site size, access, and setback requirements

Site Selection Process

- Infiltration Basin Site Screening
 - 14 potential sites ->
 - 5 selected for field tests ->
 - Only 2 suitable sites
- Infiltration Trench Site Screening
 - 38 potential sites ->
 - 8 selected for field tests ->
 - Only 2 suitable sites

Case Study Site Conditions

Site – BMP	Measured permeability mm/hr (in/hr)	Groundwater separation ^a m (ft)
San Diego Basin	22.3 (0.88)	0.6 (2)
Los Angeles Basin	5.8 (0.23)	9+ (30+)
Los Angeles Trench	40 (1.6)	0.6+ (2+)
San Diego Trench	31 (1.2)	0.6+ (2+)

Infiltration Trench – S.D.

Infiltration Trench – S.D.

Infiltration Trench – L.A.

Infiltration Basin – L.A.

Failed Infiltration Basin (S.D.)

Groundwater Quality Investigations

Vadose zone monitoring unsuccessful

 Groundwater monitoring too limited and short-term to draw reliable conclusions

Groundwater Quality Investigations

Vadose (unsaturated)

Groundwater

Performance Notes

- 50% of installations performed poorly
- Poorly performing infiltration BMPs was not due to insufficient maintenance
- The S.D. trench doesn't work well, despite good field test results
- The L.A. Basin works well, despite marginal infiltration rates (conservative design)
- Unknown groundwater impact

So how do we compensate for the variation in performance?

- Improve site investigations
- Revise siting criteria
- Use more conservative design procedure

Improved Site Investigations

- Multiple permeability tests at multiple locations
- If within 3 m (10 ft), perform long term groundwater level monitoring
- Check soil conditions for evidence of rising groundwater

Revised Siting Criteria

- Minimum Permeability:
 - 13 mm/hr (0.5 in/hr) is suggested in Maryland guidance
 - Lower if available land and high confidence in field tests
- Minimum Groundwater Separation:
 - 3 m (10 ft) separation would prevent siting in the failed San Diego location
 - 3 m is also suggested in literature as a minimum for groundwater protection
- Soil Type: NRCS Type A or B

More conservative Design Procedure

- Do not design for maximum allowed drain time (72 hours)
- Consider using 48 hour maximum drain time – 6 hours is recommended in many references

More conservative Design Procedure (cont.)

- Select Factor of Safety
 - FS of 0.5 applied to the lowest field measured permeability is recommended
 - Depends on soils, space available, expected maintenance intervals, and confidence in the field tests

Options to Maintain Infiltration

Basins:

- Scarify as needed
- Remove sediment and regrade

Trenches:

- Top trench layer is removed/rock cleaned as needed
- Complete trench reconstruction

Cautions

- Can not remove sediments on trenches without rebuilding top portion
- Is current separation guidance sufficient to protect groundwater quality?
- Typical 'pretreatment' does little for dissolved constituents
- Greater permeability usually means less groundwater protection
- California has an anti-degradation policy (68-16) requiring discharges not to exceed background levels

Acknowledgments

- Design
 - Montgomery Watson
 - RBF
- Maintenance and Monitoring
 - Law Crandall
 - Kinnetic Laboratories, Inc.

```
http://www.dot.ca.gov/hq/env/
stormwater/index.htm
```